Week/Chapter: <u>Week 1</u>	Course Assistant:
Course: Introduction to Chemistry	Instructor:

Objective: What are the one or two most difficult concepts that the students need to work on today? <u>Introduction to SIT, Study techniques, note-taking strategies, benefits of outlining chapters/reading/preparing before going to class.</u>

Beginning reminders:

- 1. Arrange seats in a circle
- 2. Make sure everyone has signed in
- 3. Review lesson plan with group
- 4. Remember to relax and be flexible!

Content to Cover:	Processes to Use*:	Time
Warm-up	Introduce yourself- Students will introduce their name, their occupations, home town, favorite television programs, and/or the best books they have read in the last year	3-5 min
Intro to what we do.	Explain what SIT is and why it is beneficial to the students; make myself seem less scary.	2-3 min
Study Techniques and Note taking strategies	Scribe will write a list of the different study techniques used by students and note taking strategies. Students will discuss how each one is beneficial for them	10 min
Outlining Benefits – before lecture	Chapter Outline- Students will open their texts to Ch. 1 (Timberlake & Timberlake, 2013) and select a single scribe to head to the white board to outline the chapter as the other students provide instruction on what to write. Then a short discussion on why they selected the main topics they did and what some would have done differently if they had been writing their own outline.	15 min
Check for understanding	Discussion – short discussion lead by the students, each student will share two things they learned during the session and/or how they will tackle the class	5-10 min
Tutoring = Q & A		5-10 minutes

After session comments/thoughts:

Amended and used with permission from UMKC 6/2014

Timberlake, K.C., & Timberlake, W. (2013). *Basic Chemistry* (4th ed.). Upper Saddle River, NJ: Pearson Education, Inc.

*Most activities are adaptations of the SI Strategy Cards from the International Center for Supplemental Instruction located at UMKC and may be found in:

Week/Chapter: <u>Week 2</u>	Course Assistant:
Course: Introduction to Chemistry	Instructor:

Objective: What are the one or two most difficult concepts that the students need to work on today? <u>Different substances (Chp.2), Conversions (Chp.2), Heat equation for specific heat (Chp.3)</u>

Beginning reminders:

- 1. Arrange seats in a circle
- 2. Make sure everyone has signed in
- 3. Review lesson plan with group
- 4. Remember to relax and be flexible!

Content to Cover:	Processes to Use*:	Time
Warm up	Stage Name— Students will make a stage name by combining the name of their first pet + the name of the first street they lived on. After they make up their name, the students will share it to the class	2-5 mins
Difference between homogenous/heterogeneous mixtures, compounds Conversions – length, temp, volume, mass, energy	Mix & Match – separate into 2 groups, give each slips with substances that they have to categorize into groups as mixtures, comp. etc Scribe writes problems on the board and solves as each person says what the next step is.	10 mins 15 mins
Heat Equations – variables and specific heat	Divide and conquer- working in pairs, students will answer the problems in the handout	10 mins
Check for understanding	So what- Students are asked to come up with the take home message of what they learned during the session	5 min
Tutoring = Q & A		5-10 minutes

After session comments/thoughts:

Conversions Problems

Length

- 1. 5.00 ft = ____ cm
- 2. O.250 mi = ____in

Temp

- 1. 50 degrees Celsius = ____ K
- 2. 375 K = _____ degrees Fahrenheit

Volume

- 1. 16 qt = ____ mL
- 2. 420. cm³ = _____ L

Mass

- 1. 3.0 lb = ____ g
- 2. 4.40 kg = ____ oz

Energy

- 1. 67.8 J = ____ calories
- 2. 2.2 Kcal = _____ J

Answers Conversions Problems

Length

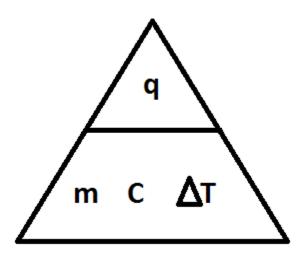
- 1. 5.00 ft = 12.7 cm
- 2. O.250 mi = 15800 in

Temp

- 1. 50 degrees Celsius = 323 K
- 2. 375 K = 216 degrees Fahrenheit

Volume

- 1. 16 qt = 15000 mL
- 2. $420. \text{ cm}^3 = 0.420 \text{ L}$


Mass

- 1. 3.0 lb = 1400 g
- 2. 4.40 kg = 141 oz

Energy

- 1. 67.8 J = 16.2 calories
- 2. 2.2 Kcal = 9200 J

Specific Heat Exercises

3.36b.) Calculate the **energy**, in joules, lost when 18.0g of gold (Au) cools from 224°C to 118°C. (The specific heat of gold is equal to 0.129 J/g°C)

3.40b.) Calculate the **mass**, in grams, for a sample of iron (Fe) that loses 2.52 kJ when its temperature decreases from 252°C to 75°C.

(The specific heat of iron is equal to 0.452 J/g°C)

3.44a.) Calculate the **change** in **temperature** for 0.650 kg of water that loses 5.48 kJ of heat.

(The specific heat of H₂O should be memorized: 4.184 J/ g°C for *liquid* water)

(Timberlake & Timberlake, 2013)

Mix and Match – after cutting out the pieces match the items in the first table with the items in the second

Oil and water	Sand	Blueberry pancake
Sugar and water	Helium	Salt
Air in Atmosphere	Brass	Water
Chocolate chip cookie	Sugar	Nitrogen

Element	Compound	Heterogeneous mixture
Compound	Homogenous mixture	Homogenous mixture
Compound	Element	Homogenous mixture

Heterogeneous Heterogeneous mixture mixture Heterogeneous

Answer Key Mix and Match

Oil and water HM	Sand HM	Blueberry pancake - HM
Sugar and water - HoM	Helium F	Salt C
Water Front		· ·
Air in	Brass	Water
Atmosphere -	HoM	С
HoM		
Chocolate chip	Sugar	Nitrogen
cookie	С	E
HM		

HM = heterogeneous mixture

HoM = homogenous mixture

E = element

C = compound

Timberlake, K.C., & Timberlake, W. (2013). *Basic Chemistry* (4th ed.). Upper Saddle River, NJ: Pearson Education, Inc.

*Most activities are adaptations of the SI Strategy Cards from the International Center for Supplemental Instruction located at UMKC and may be found in:

Week/Chapter: Week 3	Course Assistant:
Course: Introduction to Chemistry	Instructor:

Objective: What are the one or two most difficult concepts that the students need to work on today? Specific heat (Chp 5) and Atomic Mass Calculation (Chp3)

Beginning reminders:

- 1. Arrange seats in a circle
- 2. Make sure everyone has signed in
- 3. Review lesson plan with group
- 4. Remember to relax and be flexible!

Content to Cover:	Processes to Use*:	Time
	Two lies and a truth- 3 statements will be given	5 min.
Warm up	to the students relating to chapter 3 and 5. Two	
	statements will be false while the other	
	statement will be true. Together the students	
	will decide which statement is true and why the	
	other statements are false.	
Specific Heat	Paired Problem Solving/ Think Aloud- In groups,	
	students will verbalize what they are thinking	20 min.
	about as they solve a specific heat problem.	
	How will this be done? In the group, one student	
	will be the thinker while the other student will	
	be the listener. The thinker will say every step in	
	the thinking process and the listener will listen	
	and understand their every step. After the	
	problem is solved, the groups will rejoin the	
	large group and share the problem solving	
	process with the group. Two problems will be	
	used.	
	Summarizing the Steps- Together, we will review	10 min.
Atomic Mass	the steps in calculating the atomic mass by	
	sharing our knowledge with one another. One	
	problem will be used.	

Checking for Understanding	Assess the Session- Ask the students how they felt the session went, if their questions were answered, if they have any suggestions that to make the sessions more beneficial to them.	5 min.
		5-10
Tutoring = Q & A		minutes

After session comments/thoughts:

Problems for challenge concept #1:

3.80 A large bottle containing 883 g of water at 4.0 degrees Celsius is removed from the refrigerator. How many kilojoules are absorbed to warm the water to room temperature 27 degrees Celsius?

Answer: 85 kJ

3.10) When 655 J is added to a sample of ethanol, its temperature rises from 18.2 degrees Celsius to 32.8 degrees Celsius. What is the mass, in grams, of the ethanol sample?

Answer: 18.2 g

Problem for challenge concept #2:

4.84) Antimony has two naturally occurring isotopes: Sb-121 and Sb-123. If Sb-121 has a 57.21% abundance and a mass of 120.9 amu, and Sb-123 has a 42.79% abundance and a mass of 122.9 amu, what is the atomic mass of antimony?

Answer: 121.8 amu

(Timberlake & Timberlake, 2013)

Timberlake, K.C., & Timberlake, W. (2013). *Basic Chemistry* (4th ed.). Upper Saddle River, NJ: Pearson Education, Inc.

*Most activities are adaptations of the SI Strategy Cards from the International Center for Supplemental Instruction located at UMKC and may be found in:

Week/Chapter: Week 4	Course Assistant:
Course: Introduction to Chemistry	Instructor:

Objective: What are the one or two most difficult concepts that the students need to work on today? Electron configuration (chp 5) and trends in periodic table (chp 5)

Beginning reminders:

- 1. Arrange seats in a circle
- 2. Make sure everyone has signed in
- 3. Review lesson plan with group
- 4. Remember to relax and be flexible!

Content to Cover:	Processes to Use*:	Time
Warm-up	My name is- Ask students to state their name	2-3 mins
	and attach something they learned about in	
	chapter 3 or 4 that starts with the same letter as	
	their name e.g. chemical changes Cristina	
	Do an example as a group first from "Basic	
Electron Configuration: written	Chemistry": 5.6, pg 151 (Timberlake &	15mins
out	Timberlake, 2013)	
	Worksheet in pairs for 3 elements.	
	Group/Period: Chart on board made with help of	
	scribe for characteristics and examples of	
Trends in Periodic Table	elements in same group vs. same period	
Trends in Periodic Table	Ionization energy and size: Make the classroom	25mins
	a periodic table and have students walk to the	
	part of the room that corresponds with pattern	
	energy or size on the periodic table	
Check for Understanding	1 minute paper – have students write a paper	2-3 mins
	about the concepts learned in the session, then	
	they will share their response	
		5-10
Tutoring = Q & A		minutes

After session comments/thoughts:

Electron Configuration Problems

1. Fe

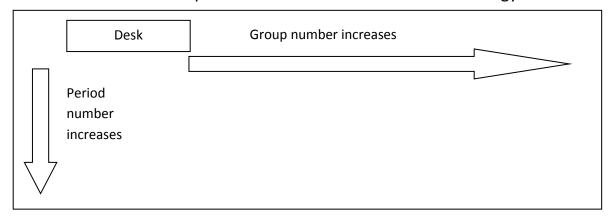
2. Br

3. Cu*

Answers:

1. Fe : $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^6$

2. Br : $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^5$


3. Cu : $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^{10}$

Trends in Periodic Table

Answer Key – Group/Period (pg 159)

Group	Period
 Same characteristics down the 	 Valence electrons in the same
group	energy level
 Same number of valence 	 Atomic size decreases going from
electrons	left to right
 Atomic size increases going down 	 Ionization energy increases from
 Ionization energy decreases 	left to right
going down	 Metallic character decreases
 Metallic character increases 	from left to right
going down	• Ex: N and O
Ex: Mg and Ca	

Class Room Blueprint for Atomic Size and Ionization energy

- 1. An element with high ionization energy (F)
- 2. An element with large radius
- 3. An element with low ionization energy
- 4. An element with small radius

Answers:

- 1. Top right corner of blueprint
- 2. Bottom left

- 3. Bottom left
- 4. Top right

Timberlake, K.C., & Timberlake, W. (2013). *Basic Chemistry* (4th ed.). Upper Saddle River, NJ: Pearson Education, Inc.

*Most activities are adaptations of the SI Strategy Cards from the International Center for Supplemental Instruction located at UMKC and may be found in:

Week/Chapter: Week 5	Course Assistant:
Course: Introduction to Chemistry	Instructor:
Ohiective: What are the one or two most difficult	concents that the students need to work o

Objective: What are the one or two most difficult concepts that the students need to work on today? 1) Naming ionic and molecular compounds (Chp. 6), Polyatomic ions (Chp. 6), Calculating molecular mass (Chp 7)

Beginning reminders:

- 1. Arrange seats in a circle
- 2. Make sure everyone has signed in
- 3. Review lesson plan with group
- 4. Remember to relax and be flexible!

Content to Cover:	Processes to Use*:	Time
Intro-Warm Up	Interview- Students will be assigned to a	5
	partner. Each will be given 3-5 min to ask	minutes
	questions that have been prepared by the	
	course assistant (e.g. Would NaCl be considered	
	a covalent or ionic bond?). When they are done,	
	they will share their interviews with the class.	
Naming ionic and molecular	Do an example as a group first 6.3, pg 179 and	
compounds	6.5, pg 190 (Timberlake & Timberlake, 2013) and	15min
	create cheat sheet for naming compounds, Then	
	in pairs, work together to name 3 compounds	
Polyatomic ions	Chart- Scribe writes on the board variations of	10 min
	the polyatomic ions with the same element and	
	talk about ways to memorize them will continue	
	naming other compounds	
Mole and Avogadro's Number	Discussion- Students will discuss how to	10 min
	calculate molar mass using their book pages 215	
	– 217 (Timberlake & Timberlake, 2013)	
	Guess test questions- From the material	5 min
Check for understanding	covered, a scribe will write 3 questions given by	
	the students that may be on the next exam	
		5-10
Tutoring = Q & A		minutes

After session comments/thoughts:

Interview Questions:

Answer: Lose

What is the total charge of a neutral atom?

Answer: 0

In which type of bond to elements share their valence electrons?

Answer: Covalent

What is a polyatomic ion?

Answer: A covalently bonded group of atoms with an electrical charge.

Ionic compounds consist of cations and anions. When naming them which ion goes in front of the other one? The cation or the anion?

Answer: Cation

How many valence electrons do noble gases have?

Do metals tend to lose or gain valence electrons?

Answer: 8

A cation has a positive or negative charge?

Answer: Positive

Why do nonmetals want to gain electrons?

Answer: In order to obtain 8 electrons in their outer shell.

Would NaCl be considered a covalent or ionic bond?

Answer: Covalent

Naming Compounds

 $1. SiO_2$

2. Al₂O₃

 $3. BaF_2$

Answers

1. SiO₂: Silicon Dioxide

2. Al₂O₃ : Aluminum oxide

3. BaF₂: barium fluoride

(Timberlake & Timberlake, 2013)

Timberlake, K.C., & Timberlake, W. (2013). *Basic Chemistry* (4th ed.). Upper Saddle River, NJ: Pearson Education, Inc.

*Most activities are adaptations of the SI Strategy Cards from the International Center for Supplemental Instruction located at UMKC and may be found in:

Week/Chapter: Week 6	Course Assistant:
Course: Introduction to Chemistry	Instructor:

Objective: What are the one or two most difficult concepts that the students need

to work on today? 1. Converting Particles to Moles; 2. Calculating

Empirical/Molecular Formula

Beginning reminders:

- 1. Arrange seats in a circle
- 2. Make sure everyone has signed in
- 3. Review lesson plan with group
- 4. Remember to relax and be flexible!

Content to Cover:	Processes to Use*:	Time
Warm up	Verbal Volleyball-In pairs, students will review as many math concepts from class as they can remember. Student A will shout out any concept, idea, issue, covered in class followed by student B. Students will continue volleying concepts back and forth until they run out of ideas. They cannot repeat something said by their partner. Then in a large group we will share the concepts.	5 min
Converting particles to moles	Peer Lessons- Select 4 problems over this topic and divide the students into groups of four or five depending on how many show up. Then give each group one problem and have them write out the solution using their textbook and class notes. Each group come up to the board and explain the problem in much detail as they can.	20 min
Calculating Empirical/Molecular Formula	Structured problem solving- Identify the steps in calculating molecular formula and then separate the students into groups. Because the steps for solving the problem were given, it will be easier for the students to help find the answer to a sample problem given. When the groups finish with the problem, ask them to explain the steps	15-20 min

	that led to their answer.	
Check for understanding	Summarize the session- Students will be asked	5 min
	to summarize the session in few sentences	
		5-10
Tutoring = Q & A		minutes

After session comments/thoughts:

Problems for challenging concept number one

Allyl sulfide (C₃H₅)₂S, gives garlic, onions, and leeks their characteristic odor.

- 1) How many moles of sulfur are in 23.2 g of (C₃H₅)₂S?
- 2) How many atoms of hydrogen are in .075 mol of (C₃H₅)₂S?
- 3) How many grams of carbon are in 4.20 x 10²³ molecules of (C₃H₅)₂S?
- 4) How many atoms of carbon are in 15.0 g of (C₃H₅)₂S?

(Timberlake & Timberlake, 2013)

Problems for Challenging concept number two

- 1) Calculate the empirical formula for:
 - a. 19.8% C, 2.20% H, and 78.0% Cl
 - b. 5.52 g of K, 1.45 g of P, and 3.00 g of O
- 2) Choral hydrate, a sedative, contains 14.52% of C, 1.83% H, 64.30% Cl, and 19.35% O. If it has an experimental molar mass of 165 g, what is its molecular formula?
- 3) Adenine, a nitrogen containing compound found in DNA and RNA is 44.5% C, 3.70% H, and 51.8% N. If adenine has an experimental molar mass of 135 g, what is its molecular formula?

Answer Key:

Problems for challenging concept number one

Allyl sulfide (C₃H₅)₂S, gives garlic, onions, and leeks their characteristic odor.

1) How many moles of sulfur are in 23.2 g of (C₃H₅)₂S?

Answer: 0.203 mol of S

2) How many atoms of hydrogen are in .075 mol of (C₃H₅)₂S?

$4.0 \times 10^{2^4}$ atoms of H

3) How many grams of carbon are in 4.20 x 10²³ molecules of (C₃H₅)₂S?

50.3 g of C

4) How many atoms of carbon are in 15.0 g of (C₃H₅)₂S?

4.75 x 10^23 atoms of C

Problems for Challenging concept number two

- 4) Calculate the empirical formula for:
 - a. 19.8% C, 2.20% H, and 78.0% Cl

Answer: C₃H₄Cl₄

b. 5.52 g of K, 1.45 g of P, and 3.00 g of O

Answer: K₃PO₄

- 5) Choral hydrate, a sedative, contains 14.52% of C, 1.83% H, 64.30% Cl, and 19.35% O. If it has an experimental molar mass of 165 g, what is its molecular formula?
 - a. Answer: C₂H₃Cl₃O₂
- 6) Adenine, a nitrogen containing compound found in DNA and RNA is 44.5% C, 3.70% H, and 51.8% N. If adenine has an experimental molar mass of 135 g, what is its molecular formula?
 - a. Answer: C₅H₅N₅

Timberlake, K.C., & Timberlake, W. (2013). *Basic Chemistry* (4th ed.). Upper Saddle River, NJ: Pearson Education, Inc.

*Most activities are adaptations of the SI Strategy Cards from the International Center for Supplemental Instruction located at UMKC and may be found in:

Week/Chapter: <u>Week 7</u>	Course Assistant:
Course: Introduction to Chemistry	Instructor:

Objective: What are the one or two most difficult concepts that the students need to work on

today? Calculating Limiting Reactants and Percent Yield

Beginning reminders:

- 1. Arrange seats in a circle
- 2. Make sure everyone has signed in
- 3. Review lesson plan with group
- 4. Remember to relax and be flexible!

Content to Cover:	Processes to Use*:	Time
	Memory- 12 note cards are prepared in which	5 min
Warm up	half will have vocabulary terms and the other	
	half will have corresponding definitions	
	(Exothermic, reactants, combustion reaction,	
	percent yield, limiting reactant, Law of	
	conservation of mass, Combination Reaction,	
	Theoretical yield, Decomposition Reaction,	
	Endothermic reaction, Products, Double	
	replacement reaction). Students will get into	
	groups and each will take turns to find a match	
	with the corresponding card. They will continue	
	taking turns until all the cards have been paired	
	together.	
Calculating Limiting Reactants	Clusters-students will be divided into smaller	
	groups for discussion on the steps for calculating	20 min
	limiting reactants. After discussing the assigned	
	topic the cluster will report the steps to the	
	other groups and check if they have all the steps	
	that their groups have. Then two problems will	
	be given to the groups so that they can apply	
	those steps.	
Percent Yields	First Line Only- A variety of types of problems	20 min
	from chapter 9 (Timberlake & Timberlake, 2013)	
	will be presented but will ask the students which	
	problem is specifically relating to percent yield	

	(they will also be ask to identify what the other problems are asking for). Then once they have identified the problem about percent yield, they will be asked how they would begin solving the percent yield problem taking it step by step until they get their final answer.	
Check for understanding	A-Ha moment- Students will be asked to write their A-ha moment during the session	
		5-10
Tutoring = Q & A		minutes

After session comments/thoughts:

Problems for challenging concept one

- 1. When nitrogen dioxide from car exhaustion combines with water in the air, it forms nitrogen oxide and nitric acid, which causes acid rain.
 - a. $3NO2(g) + H2O(I) \rightarrow NO(g) + 2HNO3(aq)$
 - i. How many moles of NO2 are needed to react with .250 mol of H2O?
 - ii. How many grams of HNO3 can be produced if 225 g of NO2 is mixed with 55.2 g of H2O?
- 2. Propane gas C3H8, reacts with oxygen to produce water and carbon dioxide.
 - a. C3H8 (g) + 5O2 (g) \rightarrow 3CO2 (g) + aH2O (l)
 - i. How many moles of H2O form when 5.00 mol of C3H8 completely reacts?

Problems for challenging concept two

- 1) $2Fe(s) + 3S(s) \rightarrow Fe2S3$
 - a. How many moles of iron are needed to react with 2.75 mol if sulfur?
- 2) Hydrogen sulfide burn with oxygen to give sulfur dioxide and water. How many grams of sulfur dioxide are formed from the reaction of 8.52 g of H2S and 9.60 g of O2?
 - a. $2H2S(g) + 3O2(g) \rightarrow 2SO2(g) + 2H2O(g)$
- 3) 3.00 mol of CO and 5.00 mol of H2 are the initial reactants, how many moles of methanol can be produced?

- a. $CO(g) + 2H2(g) \rightarrow CH3OH(g)$
- 4) When 56.6 g of calcium is reacted with nitrogen gas, 32.4 g of calcium nitride is produced. What is the percent yield of calcium nitride for this reaction?
 - a. $3Ca(s) + N2(g) \rightarrow Ca3N2$
- 5) Mercury (II) oxide decomposes to mercury and oxygen.
 - a. $2HgO(s) \rightarrow 2Hg(l) + O2(g)$

delta H = +182 kJ

i. How many kj are needed to react 25.0 g of mercury (II) oxide?

(Timberlake & Timberlake, 2013)

Key

Problems for challenging concept one

- 3. When nitrogen dioxide from car exhaustion combines with water in the air, it forms nitrogen oxide and nitric acid, which causes acid rain.
 - a. $3NO2(g) + H2O(I) \rightarrow NO(g) + 2HNO3(aq)$
 - i. How many moles of NO2 are needed to react with .250 mol of H2O?

 Answer: .750 mol of NO2
 - ii. How many grams of HNO3 can be produced if 225 g of NO2 is mixed with 55.2 g of H2O?

Answer: 205 g of HNO3

- 4. Propane gas C3H8, reacts with oxygen to produce water and carbon dioxide.
 - a. C3H8 (g) + 5O2 (g) \rightarrow 3CO2 (g) + aH2O (l)
 - i. How many moles of H2O form when 5.00 mol of C3H8 completely reacts?
 Answer: 20.0 mol of H2O

Problems for challenging concept two

- 6) 2Fe (s) + 3S (s) \rightarrow Fe2S3
 - a. How many moles of iron are needed to react with 2.75 mol if sulfur?

Answer: Calculating Moles of a Reactant

- 7) Hydrogen sulfide burn with oxygen to give sulfur dioxide and water. How many grams of sulfur dioxide are formed from the reaction of 8.52 g of H2S and 9.60 g of O2?
 - a. $2H2S (g) + 3O2 (g) \rightarrow 2SO2 (g) + 2H2O (g)$

Answer: Calculating Limiting Reactant

- 8) 3.00 mol of CO and 5.00 mol of H2 are the initial reactants, how many moles of methanol can be produced?
 - a. $CO(g) + 2H2(g) \rightarrow CH3OH(g)$

Answer: Calculating Limiting Reactant

- 9) When 56.6 g of calcium is reacted with nitrogen gas, 32.4 g of calcium nitride is produced. What is the percent yield of calcium nitride for this reaction?
 - a. $3Ca(s) + N2(g) \rightarrow Ca3N2$

Answer: Calculating percent yield → 46.4%

- 10) Mercury (II) oxide decomposes to mercury and oxygen.
 - a. $2HgO(s) \rightarrow 2Hg(l) + O2(g)$

delta H = +182 kJ

i. How many kj are needed to react 25.0 g of mercury (II) oxide?

Answer: Calculating Heat in a Reaction

(Timberlake & Timberlake, 2013)

Timberlake, K.C., & Timberlake, W. (2013). *Basic Chemistry* (4th ed.). Upper Saddle River, NJ: Pearson Education, Inc.

*Most activities are adaptations of the SI Strategy Cards from the International Center for Supplemental Instruction located at UMKC and may be found in:

Week/Chapter: <u>Week 8</u>	Course Assistant:
Course: Introduction to Chemistry	Instructor:

Objective: What are the one or two most difficult concepts that the students need to work on today? <u>Shapes of molecules and polarity</u>

Beginning reminders:

- 1. Arrange seats in a circle
- 2. Make sure everyone has signed in
- 3. Review lesson plan with group
- 4. Remember to relax and be flexible!

Content to Cover:	Processes to Use*:	Time
Warm up	Fact or Fiction- Ask everyone to write on a piece of paper THREE things about themselves which may not be known to the others in the group. Two are true and one is not. Taking turns they read out the three 'facts' about themselves and	5 min
	the rest of the group votes which are true and false.	
Shape of molecules	Grab Bag- Students will get into groups and each group will pick out a shape molecule from a bag (e.g. linear) and together describe how many bonded atoms, lone pair, and electron groups that shape molecule has as well as give an example	15 min
Polarity	Divide and Conquer-Students will get into groups and each group will be assigned a section. Each group will read and summarize their section in their group. After each group reads their material, I will have all the groups read aloud their summary. I will encourage the groups to ask questions about the other group's material if they feel they need to. (Timberlake & Timberlake, 2013)	20 min
Check for understanding	Big Idea- Ask each student to tell what s/he thought was the most important concept, idea	5-10 min

	or new information they learned during a particular lecture or even a session.	
		5-10
Tutoring = Q & A		minutes

After session comments/thoughts:

Activities: Week 8

Molecule shapes that the students will be presented with and the properties they have to describe about each shape:

- 1. Linear: has 2 electron groups, central atom is bonded to 2 atoms, has 0 lone pairs
- 2. Trigonal planar: has 3 electron groups, central atom is bonded to 3 atoms, has 0 lone pairs
- 3. Trigonal planar (bent): has 3 electron groups, central atom is bonded to 2 atoms, has 1 lone pair
- 4. Tetrahedral: has 4 electron groups, central atom is bonded to 4 atoms, has 0 lone pairs
- 5. Trigonal pyramidal: has 4 electron groups, central atom is bonded to 3 atoms, and has 1 lone pair
- 6. Tetrahedral (bent): has 4 electron groups, central atom is bonded to 2 atoms, and has 2 lone pairs

(Timberlake & Timberlake)

Important sections that groups will discuss about:

- Types of bonds
- Nonpolar molecules
- Polar molecules
- Electronegativity

Timberlake, K.C., & Timberlake, W. (2013). *Basic Chemistry* (4th ed.). Upper Saddle River, NJ: Pearson Education, Inc.

*Most activities are adaptations of the SI Strategy Cards from the International Center for Supplemental Instruction located at UMKC and may be found in:

Week/Chapter: <u>Week 9</u>	Course Assistant:
Course: Introduction to Chemistry	Instructor:

Objective: What are the one or two most difficult concepts that the students need to work on today? Review: Shapes of molecules (10.2), Attractive forces (10.4) and Changes of state (10.5)

Beginning reminders:

- 1. Arrange seats in a circle
- 2. Make sure everyone has signed in
- 3. Review lesson plan with group
- 4. Remember to relax and be flexible!

Content to Cover:	Processes to Use:	Time
Warm up	5 seconds –go around the room and allow each student to define the term in five seconds or less	5 min
Change of state	Structured problem solving- heating and cooling curve problems can be a bit confusing to students so what we are going to do is together work on a problem and identify the steps for solving heating and cooling curve problems. Hints will also be given so that they can know when to use which formulas. 2 problems will be used	10-15 min
Gas laws	Turn to a partner-a worksheet with different gas law problems will be given to the students. They will pair up with one of their classmates and determine which gas law is going to be used in each problem and pick two out of the five that they find challenging.	10-15 min
Check for understanding	Discussion- encourage students to discuss over what was covered in the session	5 min
Tutoring = Q & A		5-10 minutes

After session comments/thoughts:

5 sec go- Terms

Deposition: gas to solid

<u>Heat of fusion</u>: energy required to melt exactly 1g of a substance

<u>Heat of vaporization</u>: energy required to vaporize 1 g of a substance

Sublimation: solid to gas

Problems for activity one:

How many kJ are released when 85.0 g condenses at 100 degrees celcius and the liquid cools to 0 degrees Celsius?

How many joules are needed to melt a 525 g ice sculpture at 0 degrees Celsius and to warm the liquid to 15 degrees Celsius?

(Timberlake & Timberlake, 2013)

Problems for activity two:

A weather balloon has a volume of 750 L when filled with helium at 281 Kelvin at a pressure of 380 torr. What is the final volume, in liters, of the balloon when the pressure is 0.20 atm and the temperature -45 degrees Celsius?

A steel cylinder with a volume of 15.0 L is filled with 50.0 g of nitrogen gas at 25 degrees Celsius. What is the pressure, in atmospheres, of the N₂ gas in the cylinder?

A tank of oxygen holds 20.0 L of oxygen at a pressure of 15.0 atm. What is the volume, in liters, of this gas when it is released at a pressure of 1.00 atm?

A sample of helium gas with a pressure of 250 torr at 0 degrees Celsius is heated to give a pressure of 1500 mmHg. What would be the final temperature in degrees Celsius?

An air bubble has a volume of 0.500 L at 18 degrees Celsius. What is the final volume, in liters, of the gas when the temperature changes to 425 K?

(Timberlake & Timberlake, 2013)

Hints that will be given to the students for any heating or cooling curve problems:

Heat of Fusion = 334 J/1 g

Heat of Vaporization = 2260 J/1 g

Heat equation = mass x temp change x specific heat of water

Anytime you see the key words, melting or freezing in the problem, use the heat of fusion equation

Anytime you see the key words, vaporize or condensation, use the heat of vaporization equation

Anytime you see the key words, warming or cooling, use the heat equation

Example: if you see melting and warming in the problem then you will use the heat of fusion equation and heat equation.

Answers to Problems for activity one:

How many kJ are released when 85.0 g condenses at 100 degrees celcius and the liquid cools to 0 degrees Celsius?

Answer: 192 kj

How many joules are needed to melt a 525 g ice sculpture at 0 degrees Celsius and to warm the liquid to 15 degrees Celsius?

Answer: 208000 j

Answers to Problems for activity two:

A weather balloon has a volume of 750 L when filled with helium at 281 Kelvin at a pressure of 380 torr. What is the final volume, in liters, of the balloon when the pressure is 0.20 atm and the temperature -45 degrees Celsius?

Answer: Combined gas law; 1500 L

A steel cylinder with a volume of 15.0 L is filled with 50.0 g of nitrogen gas at 25 degrees Celsius. What is the pressure, in atmospheres, of the N₂ gas in the cylinder?

Answer: Ideal gas law; 2.90 atm

A tank of oxygen holds 20.0 L of oxygen at a pressure of 15.0 atm. What is the volume, in liters, of this gas when it is released at a pressure of 1.00 atm?

Answer: Boyle gas law; 300. L

A sample of helium gas with a pressure of 250 torr at 0 degrees Celsius is heated to give a pressure of 1500 mmHg. What would be the final temperature in degrees Celsius?

Answer: Gay Lussac's law; -23 degrees Celsius

An air bubble has a volume of 0.500 L at 18 degrees Celsius. What is the final volume, in liters, of the gas when the temperature changes to 425 K?

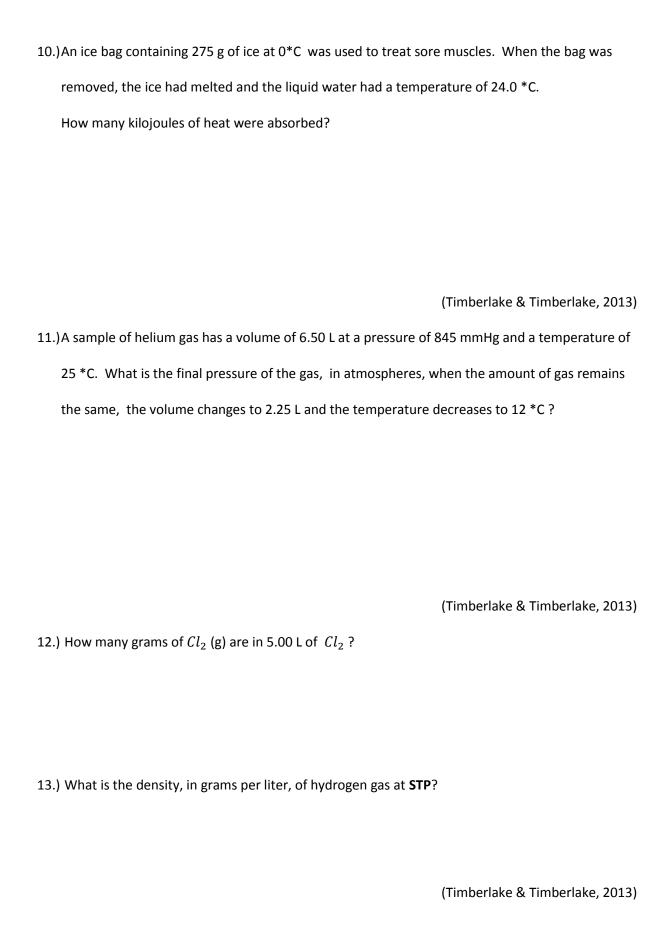
Answer: Charles' law; 0.730 L

Timberlake, K.C., & Timberlake, W. (2013). *Basic Chemistry* (4th ed.). Upper Saddle River, NJ: Pearson Education, Inc.

*Most activities are adaptations of the SI Strategy Cards from the International Center for Supplemental Instruction located at UMKC and may be found in:

Week/Chapter: <u>Week 10</u>	Course Assistant:
Course: Introduction to Chemistry	Instructor:

Objective: What are the one or two most difficult concepts that the students need to work on today? Heat of vaporization/ fusion, gas laws and formulas


Beginning reminders:

- 1. Arrange seats in a circle
- 2. Make sure everyone has signed in
- 3. Review lesson plan with group
- 4. Remember to relax and be flexible!

Content to Cover:	Processes to Use*:	Time
Icebreaker		5 min
Gas Laws	Mini quiz: Identify the formula needed, perform reasonably simple calculations. (Side one only will be completed individually)	15 min
Gas law computations, heat of fusion, STP, molar density	Quiz side 2 will completed in clusters (or as a class for very small groups)	20 min
Closing- What to know for chapter 12	Memorize Solubility Rules! We will use our textbook and slides (Timberlake & Timberlake, 2013) to look up and review the solubility rules, allowing students to independently find information, then discuss as a group.	5 min
Tutoring = Q & A		5-10 minutes

Week 10 Quiz

1.)	What is the freezing point of $H_2\mathcal{O}$ _		*C		_*F	K
2.)	What is the boiling point of H_2O		*C _		*F	K
3.)	True or False: During the time who	en a so	lid changes	to liquid, the	re is a sim ı	ıltaneous phase
	change and temperature change occ	curring				
4.)	1 atm =mmHg					
5.)	1 Torr =mmHg					
6.)	Write the combined gas law:					
7.)	What are the standard values for the	e follov	wing in STP	(Standard Te	mperature	and Pressure)?
	Temperature	_K	(_*C)	
	Pressure	_ atm	(mmHg)	
8.)	At STP , one mole of gas occupies ho	w muc	h space?			
	L	(per o	ne mole)			
9.)	What does PV= nRT stand for?					
	P=					
	V=					
	n=					
	R=					
	T=					

Timberlake, K.C., & Timberlake, W. (2013). *Basic Chemistry* (4th ed.). Upper Saddle River, NJ: Pearson Education, Inc.

*Most activities are adaptations of the SI Strategy Cards from the International Center for Supplemental Instruction located at UMKC and may be found in:

Week/Chapter: <u>Week 11</u>	Course Assistant:
Course: Introduction to Chemistry	Instructor:
Objective: What are the one or two most d	ifficult concepts that the students need

to work on today? Review practice problems and Calculating equilibrium

constants

Beginning reminders:

1. Arrange seats in a circle

- 2. Make sure everyone has signed in
- 3. Review lesson plan with group
- 4. Remember to relax and be flexible!

Content to Cover:	Processes to Use*:	Time
	Fish bowl- Students will pick a piece of paper	10 min
Warm up	from a bowl or cup that has important key	
waini up	terms. They will each draw out a term and write	
	the definition or information related to that	
	term.	
	Divide and conquer- have students work on	15 min
Practice Problems Review	problems that they need the most help with	
Practice Problems Review	from the review or from previous homework	
	assignments	
	Turn to a partner- Students will pair up with a	15 min
Calculating Equilibrium Constants	classmate and together work on 2 equilibrium	
Calculating Equilibrium Constants	problems referring to pg 450. This page has a	
	sample problem that will help guide them in	
	solving the 2 problems assigned correctly.	
	Informal quiz- students will be given three	5 min
Check for Understanding	questions over what was covered in lecture	
		5-10
Tutoring = Q & A		minutes

Fish Bowl will include the following terms:

Activation energy

Factors that increase rate of reaction

Chemical equilibrium

Equilibrium constant expression

Homogeneous equilibrium

Heterogeneous equilibrium

Equilibrium constant Kc

Problems that students will work with partner:

What is the numerical value of Kc for the following reaction if the equilibrium mixture contains $0.030 \text{ M N}_2\text{O}_4$ and 0.21 M NO_2 ?

Answer: 1.5

(Timberlake & Timberlake, 2013)

What is the numerical value of Kc for the following chemical reaction if the equilibrium mixture at 750 degrees Celsius contains 0.20 M CO and 0.052 M CO₂?

FeO (s) + CO (g)
$$\rightarrow$$
 Fe(s) + CO₂ (g)

Answer: 0.26

Timberlake, K.C., & Timberlake, W. (2013). *Basic Chemistry* (4th ed.). Upper Saddle River, NJ: Pearson Education, Inc.

*Most activities are adaptations of the SI Strategy Cards from the International Center for Supplemental Instruction located at UMKC and may be found in:

Week/Chapter:: Week 12	Course Assistant:
Course: Introduction to Chemistry	Instructor:
Objective: What are the one or two most di	fficult concepts that the students need
to work on today? Le Chatelier's Principle (C	Chp 13) and Conjugate acids and

Beginning reminders:

bases (Chp 14)

- 1. Arrange seats in a circle
- 2. Make sure everyone has signed in
- 3. Review lesson plan with group
- 4. Remember to relax and be flexible!

Content to Cover:	Processes to Use*:	Time
Warm-up	Match them up! - Students will pair up and will	5 min
	be given a sheet that has important key terms	
	and definitions. Together, they will match the	
	correct key term with its definition	
Le Chatelier's Principle	Incomplete Chart - Ask a volunteer to explain	
	what the principle is and then groups will work	15 min
	on filling in the missing information in the chart.	
	Clusters-students will get into groups and look	20 min
Conjugate acids and bases	for the three steps needed to help guide them	
	on writing conjugate acid-base pairs. We will	
	discuss about it and work out one example	
	together, then a problem will be given to their	
	group and together they will try to find out the	
	conjugate acids and bases with their group.	
	When done, all the groups will compare	
	answers.	
	Open discussion- students discussed what was	5 min
Checking for understanding	covered or concepts learned	
		5-10
Tutoring = Q & A		minutes

Match them Up!

Heterogeneous mixture	a. increasing temperature,concentration, and adding a catalyst
Activation energy	b. the reactants must collide, correct orientation of reactants, and enough energy
Chemical equilibrium	c. products over reactants
Factors that increase reaction rate	d. when the reactants an products are in two or more states
Homogeneous mixture	e. numerical value obtained by substituting experimentally measured molar concentrations at equilibrium into the equilibrium constant expression.
Equilibrium constant expression	f. minimum amount of energy required to break the bonds between atoms of the reactants
Conditions required for a reaction to occur	g. when a stress is placed on a reaction at equilibrium, the equilibrium will shift in the direction that relieves stress

Le Chateliers Principle	h. a reaction in which all the products and reactants are in the same state
Equilibrium Constant, Kc	i. no further change takes place the concentration of the reactants

the concentration of the reactants and products even though the two reactions continue at equal but opposite rates

in

Conjugate Acids and Bases

3 steps needed:

- 1. Identify the reactant that loses H+ as the acid
- 2. Identify the reactant that gains H+ as the base
- 3. Write the conjugate acid-base pairs for each

Problems

$$14.13a)H_2CO_3 (aq) + H_2O (I)$$
 $HCO_3^- (aq) + H_3O^+ (aq)$

Answer: The conjugate acid-base pairs are H_2CO_3/HCO_3^- and H_3O^+/H_2O

14.13b)
$$NH_4^+$$
 (aq) + H_2O (I) \longrightarrow NH_3 (aq) + H_3O^+ (aq)

Answer: The conjugate acid-base pairs are NH₄+/ NH₃ and H₃O+/ H₂O

Timberlake, K.C., & Timberlake, W. (2013). *Basic Chemistry* (4th ed.). Upper Saddle River, NJ: Pearson Education, Inc.

*Most activities are adaptations of the SI Strategy Cards from the International Center for Supplemental Instruction located at UMKC and may be found in:

Week/Chapter: <u>Week 13</u>	Course Assistant:
Course: Introduction to Chemistry	Instructor:

Objective: What are the one or two most difficult concepts that the students need to work on today? Identifying acid and bases (chp 14), Writing equations for reactions of acids and bases (Chp 14), Calculating molarity or volume of an acid or base in a titration (Chp.),

Beginning reminders:

- 1. Arrange seats in a circle
- 2. Make sure everyone has signed in
- 3. Review lesson plan with group
- 4. Remember to relax and be flexible!

Content to Cover:	Processes to Use:	Time
Warm Up	Shout Out Loud- Students will be encouraged to shout out any concepts that were covered last week	5 min
Products, concentrations, identifying conjugate acids and bases	Practice problems- Students will work together to answer problems given	10mins
Writing equations for reactions of acids and bases	Divide and-conquer let students work in pairs to divide and answer the problems in a short amount of time	10mins
Calculating molarity or volume of an acid or base in a titration	Scribe- have a volunteer come up to the board and work out the two problems given with the help of everyone else	10mins
Check for understanding	Opinion chart- On the board, scribe will list opinions about the content learned in the left column of a T-chart, and support the students opinions in the right column	10 min
Tutoring = Q & A	-	5-10 min

Practice Problems

Match the reactants or process with its products

- 1. Acid and metals
- 2. Acid with carbonate/bicarbonate
- 3. Neutralization

- a) Water and salt
- b) Hydrogen gas (H₂) and salt
- c) Carbon dioxide gas, water and salt
- 4. Which equation is used to calculate concentrations of H₃O⁺ and OH⁻?
 - a. $K_w = [H_3O^+] / [OH^-]^2$
 - b. $K_w = [H_3O^+][OH^-]$
 - c. $K_w = [H_3O^+] / [OH^-]$
 - d. $K_w = [H_3O^+][OH^-]^2$
- 5. Which of the following does not include the proper conjugate acid-base pairs?
 - e. $HCN + H_2O \rightarrow F^- + H_3O^+$
 - f. $HCN + H_2O \rightarrow H_3O + CN^-$
 - g. $OCl^{-} + H_2O \rightarrow HOCl + OH^{-}$
 - h. KCl + $H_2O \rightarrow HK + ClOH$
- 6. What are the 6 strong acids?
 - 1) _____
 - 2) _____
 - 3) _____
 - 4) _____
 - 5) _____
 - 6) _____

Writing equations for reactions of acids and bases

1.	Write the balanced equation for the reaction of Ca(s) and HCl(aq).
	(Timberlake & Timberlake, 2013)
2.	Write the balanced equation for the reaction for $HBr(aq)$ and $NaHCO_3(aq)$.
	(Timberlake & Timberlake, 2013)
3.	Write the balanced equation for the neutralization of $HCl(aq)$ and $Fe(OH)_3(s)$.

Calculating molarity or volume of an acid or base in a titration/ Buffer

1.	A solution of a 0.162M NaOH is used to neutralize 25.0mL of a H ₂ SO ₄ solution. If 32.8mL
	of the NaOH solution is required to reach the endpoint, what is the molarity of the
	H ₂ SO ₄ solution?

$$H_2SO_4$$
 (aq) + 2NaOH (aq) \rightarrow 2 H_2O (I) + Na₂SO₄ (aq)

(Timberlake & Timberlake, 2013)

- 2. Which of the following represents a buffer system?
 - a.HClO₂
 - b. NaNO₃
 - c. HC₂H₃O₂ & NaC₂H₃O₂
 - d. HCl & NaOH

Answers:

Practice Problems

1. b, 2.a, 3.c (pg 513) 4.b, 5. d

Writing equations for reactions of acids and bases

- 1. $Ca(s) + 2HCl(aq) \rightarrow H_2(g) + CaCl_2(aq)$
- 2. $HBr(aq) + NaHCO_3(aq) \rightarrow CO_2(g) + H_2O(I) + NaBr(aq)$
- 3. $3HCl(aq) + Fe(OH)_3(s) \rightarrow 3H_2O(l) + FeCl_3(aq)$

Timberlake, K.C., & Timberlake, W. (2013). *Basic Chemistry* (4th ed.). Upper Saddle River, NJ: Pearson Education, Inc.

*Most activities are adaptations of the SI Strategy Cards from the International Center for Supplemental Instruction located at UMKC and may be found in:

Week/Chapter:: Week 14	Course Assistant:
Course: Introduction to Chemistry	Instructor:

Objective: What are the one or two most difficult concepts that the students need to work on today? Review for final exam

Beginning reminders:

1. Arrange seats in a circle

- 2. Make sure everyone has signed in
- 3. Review lesson plan with group
- 4. Remember to relax and be flexible!

Content to Cover:	Processes to Use*:	Time
	Ghost Game- Students will add a letter to a	
Warm-up	fragment, however they must not repeat the	5 min
	letter that someone already said and they	
	should not spell a word.	
	Outline the chapter- Divide students into groups	
	and assign each group a chapter from the final	
Review	exam review topic list.	30 min
	Each group will write down everything they can	
	remember from that chapter. Once they have	
	written everything they can remember, they can	
	look up the chapter and write down anything	
	they missed.	
Check for understanding	Scribe will write a list of the different study	
	techniques used by students and note taking	10 min
	strategies. Students will discuss how each one is	
	beneficial for them	
	Tutoring for the time left to answer any	10
Tutoring = Q & A	questions students may have before the final	minutes

Final France Charles Tamina
Final Exam Study Topics
Chapter 2
Significant Figures, review all rounding rules and use in calculations
Density
Conversion of units (i.e. mL to L, cm to m, etc)
Scientific notation
Chapter 3
Pure compounds vs mixtures
Physical and chemical properties, physical and chemical changes
Temperature conversion
Specific heat
Chapter 4
Review chemical symbols and the periodic table (periods and groups), metals and nonmetals,
Parts of an atom (nucleus, protons, neutrons, electrons)
Atomic number, mass number, isotopes, atomic mass
Electron configuration
Chapter 5
Electron configuration and the periodic table
Periodic trends: group number, valence number, atomic size, Ionization energy
Chapter 6

Octet rule and ions

Amended and used with permission from UMKC 6/2014

Ionic and covalent compounds
Naming and writing compounds (be sure and review polyatomic ions)
Chapter 7
The mole
Molar mass
Percent composition
Molecular vs Empirical Formulas
Use of mole and molar mass as conversion factors
Chapter 8
Writing and balancing a chemical equation
Types of reactions (be able to predict the products of a reaction)
Exothermic vs endothermic reactions
Chapter 9
Using mole-mole ratios as conversion factors from a balanced equation
Limiting reactants
Percent yield
Chapter 10
Electron dot formulas
VSEPR theory (shapes of molecules and ions)
Electronegativity and polarity
Changes of state: heat of fusion, sublimation, evaporation, condensation, boiling pt, melting pt, freezing pt
Heating and cooling curves
Combining energy calculations

Chapter 11 Kinetic Molecular Theory of Gases Pressure conversions Boyle's Law, Charles Law, Combined Gas Law, Ideal Gas Law STP Chapter 12 Solutions: Like Dissolves Like Electrolytes and nonelectrolytes Solubility: unsaturated, saturated, supersaturated solutions Soluble and insoluble salts and net ionic equations **Percent Concentration** Molarity and Dilutions (M1V1=M2V2) Chapter 13 Rate of Reaction and Factors that affect it (Temperature, Concentration of Reactants, Catalysts) Equilibrium constants and Le Chatelier's Principle Chapter 14 Naming acids and bases Strength of acids and bases pH and calculation of pH,pOH, [H3O+], [OH-] Balancing neutralization equations Be able to identify a buffer system

Chapter 15

Oxidation and reduction (oxidizing and reducing agents)

Assigning oxidation numbers

Amended and used with permission from UMKC 6/2014

Balancing redox equations
Use of activity series
Chapter 16
Radioactivity: alpha particles, beta particles, positron, gamma rays
Be able to complete a nuclear equation
Be able to calculate and use half-lives
Formulas/Constants to memorize
Know conversions for milli-, centi-, and kilo-
R = 0.0821 L atm /mol K
1 atm = 760 mm Hg
Density = mass/volume
Molarity = moles/Liter
pH = - log (hydronium ion concentration H3O+)
p1V1 = p2V2
Ksp = [product concentrations] / [reactant concentrations] be sure to raise each reactant/product to the power of its coefficient

Timberlake, K.C., & Timberlake, W. (2013). *Basic Chemistry* (4th ed.). Upper Saddle River, NJ: Pearson Education, Inc.

*Most activities are adaptations of the SI Strategy Cards from the International Center for Supplemental Instruction located at UMKC and may be found in: