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Summary

Ideals in the algebra of power series in three variables can be classi-
fied based on algebra structures on their minimal free resolutions. The
classification is incomplete in that it remains open which algebra struc-
tures actually occur; this realizability question was formally raised by
Avramov in 2012. We survey which classes have been realized in the
literature and detail the presenter’s contributions towards an answer for
the realizability question.

Minimal Free Resolutions

A free resolution of ideal I in a ring R is a sequence of free R-modules

F• : . . . F3 F2 F1 F0 0
d3 d2 d1 d0

such that im(di+1) = ker(di) for i ≥ 1 and im(d1) = I. A free resolution
is minimal provided the rank of the free modules is the least possible.

Example 1. Consider the ring R = k[[x1, x2, x3]] and the ideal I = (x)
where x = x1, x2, x3 is a regular sequence in R. The minimal free reso-
lution of R/I below is called the Koszul resolution:
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where d3 =

 x3
−x2
x1

, d2 =

 x2 x3 0
−x1 0 x3
0 −x1 −x2

, and d1 =
(
x1 x2 x3

)
.

Classifying Resolutions of Length 3

Let I be a perfect ideal of grade 3 in a local ring R. Set m = rankR(F1)
and n = rankR(F3) and write F• as

0 Rn Rm+n−1 Rm R 0
d3 d2 d1

We look at A• = H(F• ⊗R k) = TorR• (R/I, k) and consider the induced
product on A•. Choose bases

{ei}i=1,...,m, {fi}i=1,...,m+n−1, {gi}i=1,...,n
of A1, A2, and A3, respectively. Set p = dimA1A1, q = dimA1A2, and
r = rank δA for the natural homomorphism δA : A2 → Homk(A1, A3)
defined via δA(y)(x) = xy. By results of [2], there are five distinct
classes of multiplicative structures on A:

C(3) e1e2 = f3, e2e3 = f1, e3e1 = f2 eifi = g1 for 1 ≤ i ≤ 3
T e1e2 = f3, e2e3 = f1, e3e1 = f2
B e1e2 = f3 eifi = g1 for 1 ≤ i ≤ 2

G(r) eifi = g1 for 1 ≤ i ≤ r
H(p, q) eiep+1 = fi for 1 ≤ i ≤ p ep+1fp+j = gj for 1 ≤ j ≤ q

Survey of Previous Results

Given the classification of algebra structures, the values of p, q, and r are fixed for
classes C(3), T, and B. By results of [1] and [6], we have the following restrictions
on p, q, and r for class G(r) and H(p, q):

G(r) p = 0, q = 1, r ≤ m, r ̸= m− 1

H(p, q) p ≤ min(m− 1, n + 1), p ̸= n q ≤ min(n,m− 2), q ̸= m− 3 r = q

The following tables visualize the possible classes with respect to their correspond-
ing values of p, q, and r within the parameters 4 ≤ m ≤ 9 and 2 ≤ n ≤ 9, along with
additional results towards the realizability question. The black boxes are classes re-
alized in the literature (see [3], [4], [5], [6], [7], and [8]), the gray boxes are classes
proved to be unrealizable, and the white boxes are possible classes that are not
realized in the current literature.
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Fig. 1: Previously Constructed ideals of class H
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Fig. 2: Previously Constructed ideals of class B, G(r), and T

New Results

Let I be a perfect ideal of grade 3 and x = x1, x2, x3 a regular sequence in I.
Consider the ideal J = (x) : I, said to be linked to I by x. By a result of [2],
we can construct a map ψ as an extension of the map ϕ : R/x → R/I such that
cone(ψ) is a free resolution of R/J . This process is called linkage and was used to
obtain the original classification and new results.

Theorem 1. For all m ≥ 5 and n ≥ 4, we can realize ideals of class T.

Theorem 2. For all m ≥ 6 and n ≥ 3, we can realize ideals of class B.

Theorem 3. For m ≥ 5 and n ≥ 3, we can realize ideals of all classes H(p, q) with
p = n− 1 and q = m− 4 within the parameters proved in [1] and [6].

In the tables below, the blue boxes are classes realized in the theorems stated
above.
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Fig. 3: Newly Constructed ideals of class H
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Fig. 4: Newly Constructed ideals of class B, G(r), and T
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